Korelasi antara Massa Otot dan Fungsi Kognitif pada Mahasiswi Kedokteran
DOI:
https://doi.org/10.36452/jkdoktmeditek.v29i3.2846Keywords:
fungsi kognitif, massa otot, mahasiswi kedokteranAbstract
Hasil penelitian tahun 2018 menunjukkan sebanyak 52,5% dari 217 mahasiswa kedokteran melakukan sedentary lifestyle. Sedentary lifestyle dapat mengakibatkan berkurangnya massa otot sehingga terjadi perubahan sintesis miokin yang memberikan dampak merugikan pada fungsi kognitif. Penelitian ini bertujuan untuk mengetahui korelasi antara massa otot dan fungsi kognitif pada mahasiswi kedokteran. Penelitian menggunakan desain dengan besar sampel 90 mahasiswi yang diambil seluruhnya (total sampling) dari mahasiswa sesuai kriteria penelitian. Instrumen penelitian yang digunakan adalah Tanita Medical Body Composition Analyzer (MC-980MA Plus) dan kuesioner Digit Symbol Substitution Test (DSST). Hasil penelitian didapatkan 38 (42,2%) subjek memiliki massa otot rendah, 47 (52,2%) subjek memiliki massa otot normal, dan 5 (5,6%) subjek memiliki massa otot tinggi. Hasil pemeriksaan fungsi kognitif didapatkan skor dengan median 61 (43-76), 64 (50-100), dan 81 (68-92) berturut-turut pada kelompok massa otot rendah, normal, dan tinggi. Hasil uji Kruskal-Wallis menunjukkan perbedaan skor fungsi kognitif antar kelompok massa otot (p = 0,023). Hasil uji Spearman menunjukkan korelasi antara massa otot dan skor fungsi kognitif dengan korelasi lemah (p = 0,008; r = 0,279). Semakin tinggi massa otot, semakin baik fungsi kognitif.
References
Frontera WR, Ochala J. Skeletal muscle: A Brief review of structure and function. Calcif Tissue Int [Internet]. 2015 Mar 8;96(3):183–95. Available from: https://pubmed.ncbi.nlm.nih.gov/25294644/
Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Pasco JA. Skeletal muscle health and cognitive function: A narrative review. Int J Mol Sci [Internet]. 2021;22(1):1–21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795998/pdf/ijms-22-00255.pdf
Leto L, Feola M. Cognitive impairment in heart failure patients. Journal of Geriatric Cardiology [Internet]. 2014;11(4):316–28. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294149/
Wirth R, Smoliner C, Sieber CC, Volkert D. Cognitive function is associated with body composition and nutritional risk of geriatric patients. The Journal of Nutrition, Health & Aging [Internet]. 2011;15(8):706–10. Available from: https://pubmed.ncbi.nlm.nih.gov/21968869/
Scisciola L, Fontanella RA, Surina, Cataldo V, Paolisso G, Barbieri M. Sarcopenia and cognitive function: Role of myokines in muscle brain cross‐talk. Life [Internet]. 2021;11(2):1–12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926334/pdf/life-11-00173.pdf
Isaac AR, Lima-Filho RAS, Lourenco M V. How does the skeletal muscle communicate with the brain in health and disease? Neuropharmacology [Internet]. 2021;197(August):108744. Available from: https://doi.org/10.1016/j.neuropharm.2021.108744
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health [Internet]. 2014;14(1):1–12. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-510
Batouli SAH, Saba V. At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behavioural Brain Research [Internet]. 2017;332:204–17. Available from: http://dx.doi.org/10.1016/j.bbr.2017.06.002
Pedersen BK. Physical activity and muscle–brain crosstalk. Nat Rev Endocrinol [Internet]. 2019;15(7):383–92. Available from: http://dx.doi.org/10.1038/s41574-019-0174-x
Loprinzi PD, Frith E. A brief primer on the mediational role of BDNF in the exercise-memory link. Clin Physiol Funct Imaging [Internet]. 2019;39(1):9–14. Available from: https://pubmed.ncbi.nlm.nih.gov/29719116/
Wrann CD, White JP, Salogiannnis J, Laznik-bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab [Internet]. 2013;18(5):649–59. Available from: http://aemeb.es/wp-content/uploads/Wrann_2013_Exercise-Induces-Hippocampal-BDNF-through-a-PGC-1α-FNDC5-Pathway.pdf
Pajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry [Internet]. 2010;67(2):133–43. Available from: https://pubmed.ncbi.nlm.nih.gov/20124113/
Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH. Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch [Internet]. 2019;471(3):491–505. Available from: https://pubmed.ncbi.nlm.nih.gov/30627775/
Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: The role of myokines in exercise adaptations. Cold Spring Harb Perspect Med [Internet]. 2017;7(11):1–22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666622/pdf/cshperspectmed-BEX-a029793.pdf
Faiq AR, Zulhamidah Y, Widayanti E. Gambaran sedentary behaviour dan indeks massa tubuh mahasiswa Fakultas Kedokteran Universitas YARSI di masa pendidikan tahun pertama dan kedua. Majalah Sainstekes [Internet]. 2019;5(2):66–73. Available from: https://academicjournal.yarsi.ac.id/index.php/sainstekes/article/view/925/546
Park JH, Moon JH, Kim HJ, Kong MH, Oh YH. Sedentary lifestyle: Overview of updated evidence of potential health risks. Korean J Fam Med [Internet]. 2020;41(6):365–73. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700832/pdf/kjfm-20-0165.pdf
Utomo HS, Handayani S, Wiyono N. Hubungan aktivitas fisik dengan kapasitas memori kerja pada mahasiswa program studi kedokteran Universitas Sebelas Maret. Nexus Kedokteran Komunitas [Internet]. 2016;5(2):1–11. Available from: https://jurnal.fk.uns.ac.id/index.php/Nexus-Kedokteran-Komunitas/article/download/671/493
Wright RS, Waldstein SR, Kuczmarski MF, Pohlig RT, Gerassimakis CS, Gaynor B, et al. Diet quality and cognitive function in an urban sample: Findings from the healthy aging in neighborhoods of diversity across the life span (HANDLS) study. Public Health Nutrition. 2017;20(1):92–101.
Cholidah R, Widiastuti IAE, Nurbaiti L, Priyambodo S. Gambaran pola makan, kecukupan gizi, dan status gizi mahasiswa Fakultas Kedokteran Universitas Mataram, Nusa Tenggara Barat. Intisari Sains Medis [Internet]. 2020;11(2):416–20. Available from: https://isainsmedis.id/index.php/ism/article/view/589/497
Mittal S, Verma P, Jain N, Khatter S, Juyal A. Gender based variation in cognitive functions in adolescent subjects. Ann Neurosci [Internet]. 2012;19(4):165–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117054/pdf/ANS0972-7531-19-165.pdf
Reiss J, Iglseder B, Kreutzer M, Weilbuchner I, Treschnitzer W, Kässmann H, et al. Case finding for sarcopenia in geriatric inpatients: Performance of bioimpedance analysis in comparison to dual X-ray absorptiometry. BMC Geriatr [Internet]. 2016;16(1):1–8. Available from: http://dx.doi.org/10.1186/s12877-016-0228-z
Kreissl A, Jorda A, Truschner K, Skacel G, Greber-Platzer S. Clinically relevant body composition methods for obese pediatric patients. BMC Pediatr [Internet]. 2019;19(1):1–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427859/pdf/12887_2019_Article_1454.pdf
Karnam RR, Kumar NS, Eshwar S, Deolia S. Cognitive ability as a determinant of socio economic and oral health status among adolescent college students of Bengaluru, India. Journal of Clinical and Diagnostic Research [Internet]. 2016;10(12):ZC62–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296580/pdf/jcdr-10-ZC62.pdf
Jaeger J. Digit symbol substitution test. J Clin Psychopharmacol [Internet]. 2018;38(5):513–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6291255/pdf/jcp-38-513.pdf
Murman DL. The Impact of Age on Cognition. Semin Hear [Internet]. 2015;36(3):111–21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906299/
Marthoenis M, Martina M, Alfiandi R, Dahniar D, Asnurianti R, Sari H, et al. Investigating body mass Index and body composition in patients with schizophrenia: A Case-Control Study. Schizophr Res Treatment [Internet]. 2022;2022. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898882/pdf/SCHIZORT2022-1381542.pdf
Amin M Al, Juniati D. Klasifikasi kelompok umur manusia. MATHunesa [Internet]. 2017;2(6):34. Available from: https://media.neliti.com/media/publications/249455-none-23b6a822.pdf
Hoyer WJ, Stawski RS, Wasylyshyn C, Verhaeghen P. Adult age and digit symbol substitution performance: A Meta-analysis. Psychol Aging [Internet]. 2004;19(1):211–4. Available from: https://psycnet.apa.org/record/2004-11614-020
McGlory C, van Vliet S, Stokes T, Mittendorfer B, Phillips SM. The impact of exercise and nutrition on the regulation of skeletal muscle mass. Vol. 597, Journal of Physiology. Blackwell Publishing Ltd; 2019. p. 1251–8.
Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ, Atherton PJ. Links between testosterone, oestrogen, and the growth hormone/insulin-like growth factor axis and resistance exercise muscle adaptations. Vol. 11, Frontiers in Physiology. Frontiers Media S.A.; 2021.
Stich FM, Huwiler S, D’hulst G, Lustenberger C. The Potential role of sleep in promoting a healthy body composition: Underlying mechanisms determining muscle, Fat, and Bone Mass and Their Association with Sleep. Vol. 112, Neuroendocrinology. S. Karger AG; 2022. p. 673–701.
Pang BWJ, Wee SL, Lau LK, Jabbar KA, Seah WT, Ng DHM, et al. Prevalence and associated factors of sarcopenia in singaporean adults—The Yishun Study. J Am Med Dir Assoc [Internet]. 2021;22(4):885.e1-885.e10. Available from: https://www.sciencedirect.com/science/article/pii/S1525861020304369
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alifianisa Fazriani, Nurfitri Bustamam, Yanto Sandy Tjang, Ayodya Heristyorini
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.