Hubungan Kadar Asam Urat terhadap Rasio Netrofil-Limfosit pada Pasien Medical Check-Up di Klinik X Jakarta Pusat

Authors

  • Dionisius Benito Prayoga Christanto Fakultas Kedokteran Universitas Tarumanagara, Jakarta, Indonesia
  • Freddy Ciptono Bagian Patologi Klinik Fakultas Kedokteran Universitas Tarumanagara, Jakarta, Indonesia

DOI:

https://doi.org/10.36452/jkdoktmeditek.v30i3.3272

Keywords:

asam urat, hiperurisemia, inflamasi, rasio netrofil-limfosit

Abstract

Asam urat adalah produk hasil katabolisme purin. Diet tinggi purin dapat meningkatkan risiko terjadinya peningkatan kadar asam urat tubuh. Gangguan dalam proses produksi dan ekskresi asam urat, serta kombinasi keduanya dapat memicu terjadinya hiperurisemia. Hiperurisemia dapat menginduksi terbentuknya reactive oxygen species yang berperan dalam inflamasi. Penelitian terdahulu menemukan hubungan antara rasio netrofil-limfosit (NLR) dan serum uric acid, terutama pada periode serangan asam urat. Hal tersebut akan diuji melalui metode regresi linear dalam penelitian ini. Penelitian ini bertujuan untuk meneliti peristiwa inflamasi yang disebabkan oleh asam urat melalui rasio netrofil-limfosit. Penelitian dilakukan dengan metode cross-sectional dan menggunakan data rekam medis medical check-up pasien di Klinik X tahun 2023 yang diperoleh secara acak. Pasien dewasa (19—44 tahun) sebanyak 88 orang dianalisis menggunakan aplikasi SPSS dengan metode regresi linear untuk mengetahui korelasi antarvariabel tersebut. Terdapat hubungan yang signifikan secara statistik antara kadar asam urat terhadap rasio netrofil-limfosit (p < 0,050) dan diperoleh suatu persamaan y= 1,320 + 0,071X. Berdasarkan data rekam medis medical check-up Klinik X Jakarta Pusat tahun 2023, terdapat hubungan antara kadar asam urat dengan NLR secara statistik serta persamaan menunjukkan nilai positif yang menunjukkan bahwa asam urat yang tinggi akan memiliki NLR yang tinggi.

References

Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol. 2020 Feb;16(2):75–86. Available from: https://doi.org/10.1038/s41584-019-0334-3

Kimura Y, Tsukui D, Kono H. Uric acid in inflammation and the pathogenesis of atherosclerosis. Int J Mol Sci. 2021 Jan;22(22):12394. Available from: https://doi.org/10.3390/ijms222212394

Timotius KH, Kurniadi I, Rahayu I. Metabolisme purin & pirimidin : gangguan & dampaknya bagi kesehatan [Internet]. Penerbit Andi; 2019 [cited 2023 Oct 1]. Available from: http://repository.ukrida.ac.id//handle/123456789/267

George C, Minter DA. Hyperuricemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Oct 1]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK459218/

Raymond JL, Morrow K. Krause and Mahan’s food & the nutrition care process 15th Edition. St. Louis: Elsevier; 2020. p. 839-840.

Kushiyama A, Nakatsu Y, Matsunaga Y, Yamamotoya T, Mori K, Ueda K, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediators Inflamm. 2016 Dec 14;2016:e8603164. Available from: https://doi.org/10.1155/2016/8603164

Mattiuzzi C, Lippi G. Recent updates on worldwide gout epidemiology. Clin Rheumatol. 2020 Apr 1;39(4):1061–3. Available from: https://doi.org/10.1007/s10067-019-04868-9

Santoso BN, Suwangto EG, Iryaningrum MR. The association between knowledge about gout arthritis with NSAID and allopurinol consumption in Rumah Susun Penjaringan. Rev Prim Care Pract Educ Kaji Prakt Dan Pendidik Layanan Primer. 2021 Apr 13;4(1):18. Available from: https://doi.org/10.22146/rpcpe.58359

Zuo T, Liu X, Jiang L, Mao S, Yin X, Guo L. Hyperuricemia and coronary heart disease mortality: a meta-analysis of prospective cohort studies. BMC Cardiovasc Disord. 2016 Oct 28;16(1):207. Available from: https://doi.org/10.1186/s12872-016-0379-z

Buonacera A, Stancanelli B, Colaci M, Malatino L. Neutrophil to lymphocyte ratio: an emerging marker of the relationships between the immune system and diseases. Int J Mol Sci. 2022 Mar 26;23(7):3636. Available from: https://doi.org/10.3390/ijms23073636

Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Med J. 2021;122(07):474–88. doi: 10.4149/BLL_2021_078

Kadiyoran C, Zengin O, Cizmecioglu HA, Tufan A, Kucuksahin O, Cure MC, et al. Monocyte to lymphocyte ratio, neutrophil to lymphocyte ratio, and red cell distribution width are the associates with gouty arthritis. Acta Medica Hradec Kralove Czech Repub. 2019;62(3):99–104. Available from: https://doi.org/10.14712/18059694.2019.13

Blanco A, Blanco G. Medical biochemistry. 3rd ed. London: Academic Press; 2017. p. 418

Li D, Yuan S, Deng Y, Wang X, Wu S, Chen X, et al. The dysregulation of immune cells induced by uric acid: mechanisms of inflammation associated with hyperuricemia and its complications. Front Immunol. 2023 Nov 20;14:1282890. Available from: https://doi.org/10.3389/fimmu.2023.1282890

El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: a review. J Adv Res. 2017 Sep;8(5):487–93. Available from: https://doi.org/10.1016/j.jare.2017.03.003

Braga TT, Forni MF, Correa-Costa M, Ramos RN, Barbuto JA, Branco P, et al. Soluble uric acid activates the NLRP3 inflammasome. Sci Rep. 2017 Jan 13;7:39884. Available from: https://doi.org/ 10.1038/srep39884

Crișan TO, Cleophas MCP, Oosting M, Lemmers H, Toenhake-Dijkstra H, Netea MG, et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis. 2016 Apr;75(4):755–62. Available from: https://doi.org/10.1136/annrheumdis-2014-206564

Pratomo IP, Noor DR, Kusmardi K, Rukmana A, Paramita RI, Erlina L, et al. Xanthine oxidase-induced inflammatory responses in respiratory epithelial cells: a review in immunopathology of COVID-19. Int J Inflamm. 2021 Aug 5;2021:1653392. Available from: https://doi.org/10.1155/2021/1653392

Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase in drug metabolism: beyond a role as a detoxifying enzyme. Curr Med Chem. 2016 Oct;23(35):4027–36. doi: 10.2174/0929867323666160725091915

Caliceti C, Calabria D, Roda A, Cicero A. Fructose intake, serum uric acid, and cardiometabolic disorders: a critical review. Nutrients. 2017 Apr 18;9(4):395. Available from: https://doi.org/10.3390/nu9040395

Liu Q, Gao X, Xiao Q, Zhu B, Liu Y, Han Y, et al. A combination of NLR and SST2 is associated with adverse cardiovascular events in patients with myocardial injury induced by moderate to severe acute carbon monoxide poisoning. Clin Cardiol. 2021 Mar;44(3):401–6. Available from: https://doi.org/10.1002/clc.23550

Agarwal S. Neutrophil-lymphocyte ratio predicting case severity in SARS-CoV-2 infection: a review. Cureus [Internet]. 2022 Sep 29 [cited 2024 May 31]; Available from: https://www.cureus.com/articles/96491-neutrophil-lymphocyte-ratio-predicting-case-severity-in-sars-cov-2-infection-a-review

Li Y, Cao X, Liu Y, Zhao Y, Herrmann M. Neutrophil extracellular traps formation and aggregation orchestrate induction and resolution of sterile crystal-mediated inflammation. Front Immunol. 2018 Jul 6;9:1559. Available from: https://doi.org/10.3389/fimmu.2018.01559

Kourilovitch M, Galarza–Maldonado C. Could a simple biomarker as neutrophil-to-lymphocyte ratio reflect complex processes orchestrated by neutrophils? J Transl Autoimmun. 2023 Jan 1;6:100159. Available from: https://doi.org/10.1016/j.jtauto.2022.100159

Published

2024-09-30

How to Cite

Christanto, D. B. P., & Ciptono, F. (2024). Hubungan Kadar Asam Urat terhadap Rasio Netrofil-Limfosit pada Pasien Medical Check-Up di Klinik X Jakarta Pusat. Jurnal Kedokteran Meditek, 30(3), 174–180. https://doi.org/10.36452/jkdoktmeditek.v30i3.3272

Issue

Section

Artikel Penelitian