Endolysin SAL-1 Terenkapsulasi Silver Nanoparticle Sebagai Modalitas Terapi Spesifik Gen mecA dan Antibiofilm MRSA
DOI:
https://doi.org/10.36452/jkdoktmeditek.v27i3.2106Keywords:
biofilm, endolysin SA-1, gen mecA, MRSA, nanopartikel perakAbstract
Methicillin-resistant Staphylococcus aureus (MRSA) merupakan kasus resistensi bakteri S. aureus yang sering menyerang pasien rawat inap. Terapi MRSA saat ini masih terbatas karena dapat memicu berbagai efek samping serta kurang efektif dalam terapi MRSA, sehingga dibutuhkan terapi alternatif lain berupa endolysin SAL-1. Studi literatur ini bertujuan untuk mengkaji efektivitas endolysin SAL-1 sebagai modalitas dalam terapi MRSA. Studi pustaka dilakukan dengan mengumpulkan sumber-sumber kepustakaan dari beberapa mesin pencari. Kriteria inklusi yang digunakan adalah jurnal yang dipublikasi pada tahun 2012-2021. Berdasarkan hasil analisis, endolysin SAL-1 memiliki potensi sebagai terapi alternatif MRSA karena dapat menyebabkan mutasi pada gen mecA yang berperan dalam pembentukan peptidoglikan bakteri serta menghambat pembentukan biofilm oleh koloni S. aureus. Untuk mencapai efek yang maksimal, endolysin SAL-1 dapat diadministrasikan secara intravena (IV). Guna meningkatkan bioavailabilitas serta efektivitas dari endolysin SAL-1, modalitas tersebut akan dienkapsulasi dengan silver nanoparticle (AgNPs) yang juga memiliki efek antibakteri. Pemanfaatan endolysin SAL-1 terenkapsulasi AgNPs mampu memberikan efek antibakteri yang komparatif dengan modalitas MRSA yang sudah ada serta memiliki efek samping yang minimal karena diformulasi dari bahan alami.
References
Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations: A review of recent developments in MRSA management and treatment. Crit Care. 2017;211(21):1-10.
Erikawati D, Santosaningsih D, Santoso S. Tingginya prevalensi MRSA pada isolat klinik periode 2010-2014 di RSUD Dr. Saiful Anwar Malang, Indonesia. Jurnal Kedokteran Brawijaya. 2016;29(2):149–56.
World Health Organization [Internet]. WHO antimicrobial resistance: Global report on surveillance; 2014 [diakses pada tanggal 10 November 2020]. Tersedia di: http://www.who.int/drugresistance/documents/surveillancereport/en/.
Yang X, Zhang J, Yu S, Wu Q, Guo W, Huang J, et al. Prevalence of Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus in retail ready-to-eat foods in China. Front Microbiol. 2016;7:816.
Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61.
Nuryah A, Yuniarti N, Puspitasari I. Prevalensi dan evaluasi kesesuaian penggunaan antibiotik pada pasien dengan infeksi methicillin resistant Staphylococcus aureus di RSUP Dr. Soeradji Tirtonegoro Klaten. Majalah Farmaseutik. 2019;15(2):123-9.
Tang J, Hu J, Kang L, Deng Z, Wu J, Pan J. The use of vancomycin in the treatment of adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection: A survey in a tertiary hospital in China. Int J Clin Exp Med. 2015;8(10):19436-41.
Vandecasteele SJ, De Vriese AS, Tacconelli E. The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: evidence and uncertainties. J Antimicrob Chemother. 2013;68(4):743-8.
Mergenhagen KA, Borton AR. Vancomycin nephrotoxicity: a review. J Pharm Pract. 2014;27(6):545-53.
Lowman W, Jennifer C, Perovic O. SASCM guideline for daptomycin use in South Africa. SAJID. 2017;32(2):77-81.
Jun SY, Jung GM, Yoon SJ, Oh MD, Choi YJ, Lee WJ, et al. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents. 2013;41(2):156-61.
Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015;5(3):1-16.
Ortiz-Gila MA, Nunez-Anita RE, Arenas-Arroena Concepcion, Martinez-Alvarez O, Ramirez JE, de la Fuente-Hernandez J, et al. Silver nanoparticles for the inhibition of Staphylococcus aureus. Entreciencias. 2015;3(7):133-42.
Kashani HH, Schmelcher M, Sabzalipoor H, Hosseini ES, Moniri R. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. 2017;31(1):1-26.
Kirmosaoglu S. MRSA and MSSA: the mechanism of methicillin resistance and the influence of methicillin resistance on biofilm phenotype of Staphylococcus aureus. Open Science. 2017:25-37.
Kirmosaoglu S. Staphylococcal biofilms: Pathogenecity, mechanism and regulation of biofilm formation by quorum-sensing system and antibiotic resistance mechanisms of biofilm-embedded microorganisms. Open Science. 2016;10:190-209.
Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, et al. How Staphylococcal aureus biofilms develop their characteristic structure. Proc Natl Acad Sci USA. 2012;109:1281-6.
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7(10):1147-71.
Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advances modification technologies. Int J Nanomedicine. 2018;13:3311-27.
Qayyum S, Oves M, Khan AU. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS One. 2017;12(8):1-18.
Solanki K, Grover N, Downs P, Paskaleva EE, Mehta KK, Lee L, et al. Enzyme-based listericidal nanocomposites. Sci Rep. 2013;3:1-6.
Jin JF, Zhu LL, Chen M, et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer Adherence. 2015;9:923-42.
Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017;12:2957-78.
Matamp N, Bhat SG. Phage endolysins as potential antimicrobials against multidrug resistant vibrio alginolyticus and vibrio parahaemolyticus: current status of research and challenges ahead. Microorganisms. 2019;7(3):84-94.
Jun SY, Jang IJ, Yoon S, Jang K, Yu KS, Cho JY, et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate 1 drug SAL200 after a single intravenous administration among healthy 2 volunteers. Antimicrob. Agents Chemother. 2017;61(6):1-34.
Nelson DC, Schmelcher M, Rodriguez RL, Klumpp J, Pritchard DG, Dong S, et al. Endolysin as antimicrobials. Adv Virus Res. 2012;83:299-365.
Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;30:1-12.
Jun SY, Jung GM, Yoon SJ, Youm SY, Han HY, Lee JH, et al. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clinical and Experimental Pharmacology and Physiology. 2016;43(10):1-14.
Ansari MA, Khan HM, Khan AA, Cameotra SS, Alzohairy MA. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol. 2015;33(1):101-9.
Jun SY, Jung GM, Yoon SJ, Choi YJ, Koh WS, Moon KS, et al. Preclinical safety evaluation of intravenously administered SAL 200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob. Agents Chemother. 2014;58(4):2084–8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Komang Diah Kurnia Kesumaputri, Kadek Prastiti Surya Pratiwi, Putu Feby Miswari Dewi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.