Pengaturan Sistem Heating Ventilation and Air Conditioner (HVAC) untuk Pencegahan Kontaminasi SARS-CoV-2 dalam Ruangan

Authors

  • Gratia Erlinda Tomasoa Fakultas Kedokteran dan Ilmu Kesehatan, Universitas Kristen Krida Wacana, Jakarta, Indonesia
  • Wani Devita Gunardi Departemen Mikrobiologi, Fakultas Kedokteran dan Ilmu Kesehatan, Universitas Kristen Krida Wacana , Jakarta, Indonesia
  • Ade Dharmawan Departemen Mikrobiologi, Fakultas Kedokteran dan Ilmu Kesehatan, Universitas Kristen Krida Wacana, Jakarta, Indonesia

DOI:

https://doi.org/10.36452/jkdoktmeditek.v28i2.2379

Keywords:

HVAC, kontaminasi, lingkungan dalam ruangan, pencegahan, SARS-CoV-2

Abstract

Virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-2) termasuk dalam kelompok β-coronavirus yang merupakan virus RNA sense positif rantai tunggal dengan selubung lipid dan penyakit yang disebabkannya disebut Coronavirus Disease 2019 atau COVID-19. World Health Organization (WHO) secara resmi menyatakan wabah COVID-19 sebagai pandemi global dan pemerintah di seluruh dunia mulai menerapkan strategi untuk memperlambat penyebaran infeksi. Penularan SARS-CoV-2 umumnya melalui droplet tetapi penularan secara airborne (aerosol) juga mungkin terjadi. Ventilasi merupakan salah satu faktor yang memengaruhi transmisi secara airborne sehingga muncul pertanyaan tentang peran sistem heating, ventilation, and air-conditioning (HVAC) dalam penyebaran COVID-19 di lingkungan dalam ruangan. Penulis hendak mengkaji sumber-sumber kepustakaan yang tersedia yang membahas tentang kontaminasi udara dan area permukaan di lingkungan dalam ruangan dan pengaturan sistem HVAC dalam mencegah penyebaran SARS-CoV-2. Tulisan ini disusun dengan mengkaji 10 artikel jurnal penelitian yang berasal dari PubMed. Hasil kajian didapatkan bahwa pencegahan kontaminasi SARS-CoV-2 di dalam ruangan dengan sistem HVAC dapat dilakukan dengan meningkatkan laju ventilasi, menghindari sirkulasi udara kembali, menggunakan filter udara, ultraviolet germicidal irradiation (UVGI), serta rutin melakukan desinfeksi atau sterilisasi ruangan maupun permukaan.

References

Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, et al. The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: recent advances, prevention, and treatment. Int J Environ Res Public Health. 2020;17(7):2323.

Shoaib MH, Ahmed FR, Sikandar M, Yousuf RI, Saleem MT. A journey from SARS-CoV-2 to COVID-19 and beyond: a comprehensive insight of epidemiology, diagnosis, pathogenesis, and overview of the progress into its therapeutic management. Front Pharmacol. 2021;12:576448.

Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.

Singh R, Kang A, Luo X, Jeyanathan M, Gillgrass A, Afkhami S, et al. COVID-19: current knowledge in clinical features, immunological responses, and vaccine development. FASEB J. 2021;35(3):e21409.

Anghel L, Popovici CG, Stătescu C, Sascău R, Verdeș M, Ciocan V, et al. Impact of HVAC-systems on the dispersion of infectious aerosols in a cardiac intensive care unit. Int J Environ Res Public Health. 2020;17(18):6582.

Guo G, Ye L, Pan K, Chen Y, Xing D, Yan K, et al. New insights of emerging SARS-CoV-2: epidemiology, etiology, clinical features, clinical treatment, and prevention. Front Cell Dev Biol. 2020;8:410.

Birgand G, Peiffer-Smadja N, Fournier S, Kerneis S, Lescure FX, Lucet JC. Assessment of air contamination by SARS-CoV-2 in hospital settings. JAMA Netw Open. 2020;3(12):e2033232.

WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard. (n.d.). [cited 2021 Mar 29]. Available from: https://covid19.who.int/

Wiktorczyk-Kapischke N, Grudlewska-Buda K, Wałecka-Zacharska E, Kwiecińska-Piróg J, Radtke L, Gospodarek-Komkowska E, et al. SARS-CoV-2 in the environment-non-droplet spreading routes. Sci Total Environ. 2021;770:145260.

WHO. Roadmap to improve and ensure good indoor ventilation in the context of COVID-19. 2021. [cited 2021 Mar 29]. Available from: https://www.who.int/publications/i/item/9789240021280

Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11:1-7.

Zhou J, Otter JA, Price JR, Cimpeanu C, Garcia DM, Kinross J, et al. Investigating SARSCoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin Infect Dis. 2021;73 (1): e1870–7.

Guo ZD, Wang ZY, Zhang SF, Li X, Li L, Li C, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020;26: 1586-91.

Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581: 465-9.

Razzini K, Castrica M, Menchetti L, Maggi L, Negroni L, Orfeo N V, et al. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci Total Environ. 2020; 742

Sharma A, Ahmad Farouk I, Lal SK. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control, and prevention. Viruses. 2021;13(2):202.

Senatore V, Zarra T, Buonerba A, Choo KH, Hasan SW, Korshin G, et al. Indoor versus outdoor transmission of SARS-COV-2: environmental factors in virus spread and underestimated sources of risk. EuroMediterr J Environ Integr. 2021;6(1):30.

Zheng W, Hu J, Wang Z, Li J, Fu Z, Li H, et al. COVID-19 impact on operation and energy consumption of heating, ventilation and air-conditioning (HVAC) systems. Advances in Applied Energy. 2021 Aug 25;3: 100040. [cited 2021 Mar 29]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166037/

Kohanski MA, Lo LJ, Waring MS. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int Forum Allergy Rhinol. 2020;10(10):1173-9.

Hayashi M, Yanagi U, Azuma K, Kagi N, Ogata M, Morimoto S, et al. Measures against COVID-19 concerning summer indoor environment in Japan. Japan Architectural Review. 2020:10.1002/2475-8876.12183.

Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G .et al. How can airborne transmission of COVID-19 indoors be minimised? Environment international. 2020;142:105832.

Aghalari Z, Dahms HU, Sosa-Hernandez JE, Oyervides-Muñoz MA, Parra-Saldívar R. Evaluation of SARS-COV-2 transmission through indoor air in hospitals and prevention methods: a systematic review. Environ Res. 2021;195:110841.

Nembhard,MD, Burton DJ, Cohen JM. Ventilation use in nonmedical settings during COVID-19: cleaning protocol, maintenance, and recommendations. Toxicology and industrial health. 2020:36(9):644-53.

Li YH, Fan YZ, Jiang L, Wang HB. Aerosol and environmental surface monitoring for SARS-CoV-2 RNA in a designated hospital for severe COVID-19 patients. Epidemiol Infect. 2020;148:e154.

Borro L, Mazzei L, Raponi M, Piscitelli P, Miani A, Secinaro A. The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: a first computational fluid dynamic model, based on investigations performed at the Vatican State Children's Hospital. Environ Res. 2021;193:110343. doi:10.1016/j.envres.2020.110343

Trancossi M, Carli C, Cannistraro G, Pascoa J, Sharma S. Could thermodynamics and heat and mass transfer research produce a fundamental step advance toward and significant reduction of SARS-COV-2 spread? Int J Heat Mass Transf. 2021;170:120983.

Azuma K, Yanagi U, Kagi N, Kim H, Ogata M, Hayashi M. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med. 2020;25:66.

Cotman ZJ, Bowden MJ, Richter BP, Phelps JH, danDibble CJ. Factors affecting aerosol SARS-CoV-2 transmission via HVAC systems; a modeling study. PLOS Computational Biology. 2021. [cited 2021 Mar 29]. Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009474

Lin Q, Lim JYC, Xue K, Yew PYM, Owh C, Chee PL, et al. Sanitizing agents for virus inactivation and disinfection. View. 2020:e16.

Cheng Y, Hu J, Chen H, Wu L, Liao J, Cheng L. Effects of different methods of air disinfection of computed tomography rooms dedicated to COVID-19 cases. Biomed Res Int. 2020 Nov 22;2020:5302910.

Air | Background | Environmental Guidelines | Guidelines Library | Infection Control | CDC.(n.d.). [cited 2021 Apr 15]. Available from: https://www.cdc.gov/infectioncontrol/guidelines/environmental/background/air.html#c3

Shao L, Ge S, Jones T, Santosh M, Silva LFO, Cao Y, et al. The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geoscience Frontiers. 2021:101189.

Beggs CB, Avital EJ. Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: a feasibility study. PeerJ. 2020;8:e10196.

Published

2022-04-14 — Updated on 2022-05-07

How to Cite

Tomasoa, G. E., Gunardi, W. D., & Dharmawan, A. (2022). Pengaturan Sistem Heating Ventilation and Air Conditioner (HVAC) untuk Pencegahan Kontaminasi SARS-CoV-2 dalam Ruangan . Jurnal Kedokteran Meditek, 28(2), 227–236. https://doi.org/10.36452/jkdoktmeditek.v28i2.2379

Issue

Section

Tinjauan Pustaka